Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding.
نویسندگان
چکیده
Vav and Sos1 are Dbl family guanine nucleotide exchange factors, which activate Rho family GTPases in response to phosphatidylinositol 3-kinase products. A pleckstrin homology domain adjacent to the catalytic Dbl homology domain via an unknown mechanism mediates the effects of phosphoinositides on guanine nucleotide exchange activity. Here we tested the possibility that phosphatidylinositol 3-kinase substrates and products control an interaction between the pleckstrin homology domain and the Dbl homology domain, thereby explaining the inhibitory effects of phosphatidylinositol 3-kinase substrates and stimulatory effects of the products. Binding studies using isolated fragments of Vav and Sos indicate phosphatidylinositol 3-kinase substrate promotes the binding of the pleckstrin homology domain to the Dbl homology domain and blocks Rac binding to the DH domain, whereas phosphatidylinositol 3-kinase products disrupt the Dbl homology/pleckstrin homology interactions and permit Rac binding. Additionally, Lck phosphorylation of Vav, a known activating event, reduces the affinities between the Vav Dbl homology and pleckstrin homology domains and permits Rac binding. We also show Vav activation in cells, as monitored by phosphorylation of Vav, Vav association with phosphatidylinositol 3,4,5-trisphosphate, and Vav guanine nucleotide exchange activity, is blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest the molecular mechanisms for activation of Vav and Sos1 require disruption of inhibitory intramolecular interactions involving the pleckstrin homology and Dbl homology domains.
منابع مشابه
Regulation of Vav proteins by intramolecular events.
The Vav family is a group of signal transduction molecules with oncogenic potential that play important roles in development and cell signaling. The function of Vav proteins co-evolved with tyrosine kinase pathways, probably to assure the optimal conversion of extracellular signals into intracellular responses coupled to the cytoskeleton and the transcriptome. To date, the best-known function o...
متن کاملA crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange.
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. While it is known that the DH domain is the principal catalytic subunit, recent biochemical data indicate that for some Dbl-family proteins, such as Dbs and Trio, PH domains may cooperate with th...
متن کاملCritical role of the pleckstrin homology and cysteine-rich domains in Vav signaling and transforming activity.
Vav family proteins are members of the Dbl family of guanine nucleotide exchange factors and activators of Rho family small GTPases. In addition to the Dbl homology (DH) domain important for guanine nucleotide exchange factor catalytic function, all Dbl family proteins contain an adjacent pleckstrin homology (PH) domain that serves to regulate DH domain activity. Although the role of the PH dom...
متن کاملTuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton.
Tuba is a novel scaffold protein that functions to bring together dynamin with actin regulatory proteins. It is concentrated at synapses in brain and binds dynamin selectively through four N-terminal Src homology-3 (SH3) domains. Tuba binds a variety of actin regulatory proteins, including N-WASP, CR16, WAVE1, WIRE, PIR121, NAP1, and Ena/VASP proteins, via a C-terminal SH3 domain. Direct bindin...
متن کاملThe Rho Family Guanine Nucleotide Exchange Factor Vav-2 Regulates the Development of Cell-Mediated Cytotoxicity
Previous pharmacologic and genetic studies have demonstrated a critical role for the low molecular weight GTP-binding protein RhoA in the regulation of cell-mediated killing by cytotoxic lymphocytes. However, a specific Rho family guanine nucleotide exchange factor (GEF) that activates this critical regulator of cellular cytotoxicity has not been identified. In this study, we provide evidence t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 20 شماره
صفحات -
تاریخ انتشار 2000